Tetrahedral and Octahedral Cobalt(II) in the Structure of Tris(pyridine)(salicylaldehyde \boldsymbol{S}-methylisothiosemicarbazonato)cobalt(II) Trichloro(pyridine)cobaltate(II)

By V. Divjaković, V. M. Leovac and B. Ribár
Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, I. Djuričića 4, Yugoslavia
and Gy. Argay and A. Kálmán
Central Research Institute of Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, POB 17, Hungary

(Received 7 October 1981; accepted 23 November 1981)

Abstract

$\left[\mathrm{Co}^{11}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OS}\right)\right]\left[\mathrm{Co}^{11}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Cl}_{3}\right]$, $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{CoN}_{6} \mathrm{OS}^{+} . \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{CoN}^{-}, \quad M_{r}=748.9$, triclinic, $P \overline{1}, a=9.005(1), b=11.832(7), c=$ 16.864 (8) $\AA, \alpha=100.34$ (2), $\beta=92.38$ (2), $\gamma=$ $94.27(2)^{\circ}, V=1760(1) \AA^{3}, D_{c}=1.41, D_{m}=1.45 \mathrm{Mg}$ $\mathrm{m}^{-3}, Z=2, \mu($ Mo $K \alpha)=12.96 \mathrm{~mm}^{-1}, F(000)=764$. The structure was refined to $R=0.063$ for 3003 unique observed reflections. The two independent Co atoms have different coordinations: octahedral in the complex cation $\left[\mathrm{Co}^{11}(\mathrm{H} L)(\mathrm{py})_{3}\right]+$ ($\mathrm{py}=$ pyridine) and tetrahedral in the anion $\left[\mathrm{Co}^{11} \mathrm{Cl}_{3}(\mathrm{py})\right]^{-}$, where $\mathrm{H} L$ is the tridentate (NNO) salicylaldehyde S-methylisothiosemicarbazonato ligand. Magnetic measurements (at 298 K) ($\mu_{\text {eff }}=3.18 \mathrm{BM}, 1 \mathrm{BM} \equiv 9.27 \times 10^{-24} \mathrm{~J}$ T^{-1}) indicate that the tetrahedral and octahedral $\mathrm{Co}^{\text {II }}$ atoms are in high- and low-spin states respectively.

Introduction

The tridentate salicylaldehyde S-methylisothiosemicarbazone ligand $\left(\mathrm{H}_{2} L\right), \mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=$ $\mathrm{C}\left(-\mathrm{NH}_{2}\right)-\mathrm{SCH}_{3}$, forms complexes with some transition metals (Leovac, 1978; Leovac, Gerbeleu \& Revenko, 1978; Gerbeleu, Turte, Canić, Leovac \& Arion, 1980). It has been shown that this tridentate NNO ligand, by reaction with $\mathrm{Co}^{\text {III }}$ salts, gives octahedral bis(ligand) Co^{111} complexes of general formula $\left[\mathrm{Co}(\mathrm{H} L)_{2}\right] X . n \mathrm{H}_{2} \mathrm{O}$, where $X=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$, $\left(\mathrm{NO}_{3}\right)^{-},\left(\mathrm{ClO}_{4}\right)^{-}$and $\mathrm{H} L=\left[\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{N}-\right.$ $\left.\mathrm{N}=\mathrm{C}\left(-\mathrm{NH}_{2}\right)-\mathrm{SCH}_{3}\right]^{-}$. All these complexes are brown in colour and diamagnetic. However, by reaction of an alcoholic solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{H}_{2} L$ and pyridine, dark-green paramagnetic crystals are formed whose formula, on the basis of the elemental analysis, is $\mathrm{Co}_{2}^{11}(\mathrm{H} L)(\mathrm{py})_{4} \mathrm{Cl}_{3}$.

The effective magnetic moment of this compound per one $\mathrm{Co}^{\text {II }}$ ion is 3.18 BM . The compound is soluble in organic solvents (methanol, ethanol, acetone, dimethylformamide) and the molar conductivity of a
$10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solution in absolute ethanol is $44 \Omega^{-1}$ $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$ at room temperature, indicating a $1: 1$ electrolyte (Geary, 1971). In view of the possibly different stereochemistry of $\mathrm{Co}^{\text {II }}$ the above data are not sufficient to define the nature of the complex, so an X -ray analysis of its crystals has been performed.
$2 \mathrm{~cm}^{3}$ of pyridine and $10 \mathrm{~cm}^{3}$ of ethanol were added to a mixture of $1.2 \mathrm{~g}(5 \mathrm{mmol})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 1.0 g (5 mmol) of salicylaldehyde S-methylisothiosemicarbazone. By stirring and mild heating the reactants dissolved and dark-green, plate-like crystals were formed. After cooling to room temperature the crystals were filtered and washed out with ethanol and ether. The yield was 1.2 g . The substance is soluble in acetone, less soluble in methanol and ethanol and insoluble in ether. The results of the elemental analysis are (calculated values in parentheses): Co 15.28 (15.74), С 46.29 (46.51), Н 4.13 (4.04), N 13.51 (13.09), $\mathrm{Cl} 14 \cdot 28 \%$ (14.20).

Preliminary Weissenberg and oscillation photographs showed triclinic symmetry. Accurate cell dimensions were obtained by least squares from the setting angles of 25 reflections with $2 \theta>30^{\circ}$. Intensities were collected on an automated EnrafNonius CAD-4 diffractometer using graphite-monochromated Mo $K \alpha$ radiation and the $\omega-2 \theta$ scan mode. Of the 4385 unique reflections recorded with $2 \theta \leq 50^{\circ}$, 3003 were regarded as observed $[I \geq 4 \sigma(I)]$ and subsequently used for the structure determination and refinement. Correction for Lorentz and polarization effects was applied but not for absorption. The intensity statistics indicated the centrosymmetric space group $P \overline{1}$ as most likely. Measurements of the magnetic susceptibility were carried out at 298 K .

The structure was solved by the heavy-atom method. A three-dimensional Patterson function was used to locate the positions of the two symmetry-independent Co atoms. Successive cycles of Fourier and difference Fourier synthesis revealed the positions of all non-H atoms. Full-matrix least-squares refinement with isotropic temperature factors gave an R value of 0.11 .

Table 1. Final fractional coordinates $\left(\times 10^{4}, \times 10^{3}\right.$ for $\mathrm{H})$ and isotropic temperature parameters with e.s.d.'s in parentheses

Table 1 (cont.)

	x	y	z	$B\left(\AA^{2}\right)$
$\mathbf{H}(20)$	52	187	354	$4 \cdot 4$
$\mathbf{H}(21)$	-13	169	485	$4 \cdot 7$
$\mathbf{H}(22)$	-144	315	560	$4 \cdot 4$
$\mathbf{H}(23)$	-214	466	499	$4 \cdot 5$
$\mathbf{H}(24)$	-150	435	343	$3 \cdot 9$
$\mathbf{H}(25)$	368	81	677	$5 \cdot 5$
$\mathbf{H}(26)$	199	126	579	$5 \cdot 8$
$\mathbf{H}(27)$	284	168	461	$6 \cdot 1$
$\mathbf{H}(28)$	540	184	440	$5 \cdot 6$
$\mathbf{H}(29)$	706	144	540	$5 \cdot 2$

Anisotropic vibrational parameters were then assigned and further refinement lowered the R value to $0 \cdot 075$. The positions of all H atoms were located from a difference map and their coordinates and isotropic temperature factors were included in the calculations with all parameters fixed. After application of a weighting scheme $\left[w=1 / \sigma^{2}(F)\right.$, where $\sigma(F)$ is the standard deviation in the observed amplitudes based on counting statistics] and a correction for extinction effects [the refined value is $g=6.7(2) \times 10^{-7}$] the final R was 0.063 . Atomic scattering factors and anomalous-dispersion terms were taken from International Tables for X-ray Crystallography (1974). The final atomic parameters are listed in Table 1.*

Discussion

On the basis of the X-ray crystal analysis the structural formula of the title compound can be written as $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{H} L)(\mathrm{py})_{3}\right]\left[\mathrm{Co}^{11} \mathrm{Cl}_{3}(\mathrm{py})\right]$. The Co atoms adopt two coordination geometries in the asymmetric unit (Fig. 1). Coordination around $\mathrm{Co}(1)$ is slightly distorted octahedral [right angles $81.6(6)-95.4(5)^{\circ}$] and involves five N atoms [1.889 (9)-1.963 (7) \AA] from the chelate $\mathrm{H} L$ ligand and the pyridine groups and one O [1.893 (7) \AA] from the chelate ligand. The $\mathrm{Co}(1)$ octahedron is weakly compressed along the $\mathrm{O}-\mathrm{N}(1)$ direction and assumes mer configuration. Unlike $\mathrm{Co}(1)$, $\mathrm{Co}(2)$ is in a tetrahedral environment formed by three Cl atoms [2.246 (3)-2.261 (3) \AA] and one pyridine N [2.052 (9) \AA]. A search in the files of the Cambridge Crystallographic Data Centre showed that this is the first time this kind of coordination $(3 \mathrm{Cl}+\mathrm{N})$ has been found in a complex containing Co as a central atom, though the presence in the same compound of octahedral and tetrahedral Co ions has also been found in the structures of $\mathrm{CoCl}_{2} .2 \frac{1}{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (BkoucheWaksman \& L'Haridon, 1977) and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ -

[^0]

Fig. 1. A perspective drawing of the complex ions.

Fig. 2. The content of a unit cell projected along a.
[$\left.\mathrm{CoCl}_{4}\right]$-18-crown-6-acetone (Vance, Holt, Piernot \& Holt, 1980). The X-ray crystal structure explains the value of the molar conductivity and the magnetic moment (3.18 BM) which corresponds well to the average of $\mu_{\text {eff }}$ for low-spin octahedral ($1.80-1.85 \mathrm{BM}$) and high-spin tetrahedral (4.4-4.8 BM) $\mathrm{Co}^{\text {II }}$ complexes (Day \& Selbin, 1969). The shortest distance between neighbouring ions is 3.37 (1) \AA and it is found for the contacts $\mathrm{N}(2) \cdots \mathrm{C}(22)(\bar{x}, 1-y, 1-z)$ and $\mathrm{N}(1) \cdots \mathrm{Cl}(3)(1-x, \bar{y}, 1-z)$, the latter corresponding to a van der Waals interaction. The molecular packing is shown in Fig. 2.

The interatomic distances (Table 2) $\mathrm{Co}(2)-\mathrm{Cl}$ and $\mathrm{Co}(2)-\mathrm{N}(7)$ in the tetrahedral anion are in good agreement with those found in the structures of dichlorobis(4-methylpyridine)cobalt(II) (Laing \& Carr, 1975), $\mathrm{CoCl}_{2} .2 \frac{1}{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (Bkouche-Waksman \& L'Haridon, 1977) and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{CoCl}_{4}\right]-18$-crown6 -acetone (Vance et al., 1980). The bond distance $\mathrm{Co}(2)-\mathrm{N}(7)$ is significantly longer (about $0 \cdot 1 \AA$) compared to the corresponding $\mathrm{Co}(1)-\mathrm{N}(\mathrm{py})$ bond distances of the complex cation.

Salicylaldehyde S-methylisothiosemicarbazone takes part in the coordination as a tridentate NNO ligand with the OH group deprotonated as found in the structures of chloro(salicylaldehyde S-methylisothiosemicarbazonato)copper(II) (Biyskin, Gerasimov \& Belov, 1981), ammonium (salicyaldehyde S-methylisothiosemicarbazonato)dioxovanadate(V) monohydrate

Table 2. Selected bond distances (\AA) and bond angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

Octahedron			
$\mathrm{Co}(1)-\mathrm{O}$	1.893 (7)	$\mathrm{Co}(1)-\mathrm{N}(4)$	1.953 (7)
$\mathrm{Co}(1)-\mathrm{N}(1)$	1.889 (9)	$\mathrm{Co}(1)-\mathrm{N}(5)$	1.960 (8)
$\mathrm{Co}(1)-\mathrm{N}(3)$	1.911 (8)	$\mathrm{Co}(1)-\mathrm{N}(6)$	1.963 (7)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}$	176.8 (5)	$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(3)$	$90 \cdot 1$ (6)
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{N}(5)$	175.9 (6)	$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(5)$	89.4 (6)
$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(6)$	178.6 (6)	$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{O}$	88.9 (5)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(3)$	81.6 (6)	$\mathrm{N}(6)-\mathrm{Co}(1)-\mathrm{N}(1)$	89.1 (6)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(5)$	94.4 (6)	$\mathrm{N}(6)-\mathrm{Co}(1)-\mathrm{N}(3)$	$90 \cdot 2$ (6)
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{O}$	95.4 (5)	$\mathrm{N}(6)-\mathrm{Co}(1)-\mathrm{N}(5)$	90.4 (6)
$\mathrm{N}(5)-\mathrm{Co}(1)-\mathrm{O}$	88.6 (5)	$\mathrm{N}(6)-\mathrm{Co}(1)-\mathrm{O}$	89.8 (5)
$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(1)$	$92 \cdot 2$ (6)		
Tetrahedron			
$\mathrm{Co}(2)-\mathrm{Cl}(1)$	2.261 (4)	$\mathrm{Co}(2)-\mathrm{Cl}(3)$	$2 \cdot 246$ (3)
$\mathrm{Co}(2)-\mathrm{Cl}(2)$	$2 \cdot 248$ (3)	$\mathrm{Co}(2)-\mathrm{N}(7)$	$2 \cdot 052$ (9)
$\mathrm{Cl}(1)-\mathrm{Co}(2)-\mathrm{Cl}(2)$) 110.6 (2)	$\mathrm{Cl}(2)-\mathrm{Co}(2)-\mathrm{Cl}(3)$	113.0 (2)
$\mathrm{Cl}(1)-\mathrm{Co}(2)-\mathrm{Cl}(3)$	115.8(2)	$\mathrm{Cl}(2)-\mathrm{Co}(2)-\mathrm{N}(7)$	$110 \cdot 2$ (4)
$\mathrm{Cl}(1)-\mathrm{Co}(2)-\mathrm{N}(7)$	104.8 (2)	$\mathrm{Cl}(3)-\mathrm{Co}(2)-\mathrm{N}(7)$	101.5 (4)

Chelate ligand			
S-C(1)	$1.76(1)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.38(1)$
$\mathrm{S}-\mathrm{C}(2)$	$1.80(1)$	$\mathrm{C}(4)-\mathrm{C}(9)$	$1.38(1)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.34(1)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.37(2)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.33(1)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.37(2)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.40(1)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.35(2)$
$\mathrm{N}(3)-\mathrm{C}(3)$	$1.27(1)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.43(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.45(2)$	$\mathrm{C}(9)-\mathrm{O}$	$1.35(1)$
$\mathrm{C}(2)-\mathrm{S}-\mathrm{C}(1)$			
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$102.0(9)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{S}$	$119(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$123(2)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{S}$	$118(1)$	$\mathrm{C}(4)-\mathrm{C}(4)-\mathrm{C}(9)$	$119(2)$
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{C}(1)$	$108(1)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(6)$	$121(2)$
$\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$111(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120(2)$
$\mathrm{Co}(1)-\mathrm{N}(3)-\mathrm{N}(2)$	$116(1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$121(2)$
$\mathrm{Co}(1)-\mathrm{N}(3)-\mathrm{C}(3)$	$126(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}$	$115(1)$
$\mathrm{Co}(1)-\mathrm{O}-\mathrm{C}(9)$	$123(1)$	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{O}$	$126(2)$
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(3)$	$118(1)$	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$119(2)$
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$125(2)$		
Pyridine(1)			
$\mathrm{N}(4)-\mathrm{C}(10)$	$1.35(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.41(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.38(1)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.36(1)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.38(2)$	$\mathrm{C}(14)-\mathrm{N}(4)$	$1.36(1)$

Pyridine(2)			
$\mathrm{N}(5)-\mathrm{C}(15)$	$1.33(1)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.33(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.40(2)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.39(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.40(2)$	$\mathrm{C}(19)-\mathrm{N}(5)$	$1.36(1)$
		mean $\angle=120.4$	

Pyridine(3)			
N(6)-C(20)	$1.35(1)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.35(2)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.38(1)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.34(1)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.37(2)$	$\mathrm{C}(24)-\mathrm{N}(6)$	$1.38(1)$
		mean $\angle=120.4$	
Pyridine(4)		$\mathrm{C}(27)-\mathrm{C}(28)$	$1.38(2)$
$\mathrm{N}(7)-\mathrm{C}(25)$	$1.34(2)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.37(2)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.37(2)$	$\mathrm{C}(29)-\mathrm{N}(7)$	$1.35(1)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.27(1)$		
		mean $\angle=120.6$	

(Ribár, Kozmidis-Petrović \& Leovac, 1980) and (ophenanthroline)(salicylaldehyde S-methylisothiosemicarbazonato)copper(II) nitrate (Petrović, Carić, Leovac \& Canić, 1979). Bond distances and angles in the chelating ligand are in good agreement with those found in these compounds. It is worth noting that the $\mathrm{Co}(1)-\mathrm{N}(1)$ distance is slightly (but not significantly, $\Delta / \sigma=1.83$) shorter than $\mathrm{Co}(1)-\mathrm{N}(3)$, and the same difference has been observed for the other transition-metal complexes of S-methylisothiosemicarbazones.

As a consequence of chelation five- and sixmembered metallocycles are formed in which the displacements from the best planes do not exceed $0.08 \AA$. The dihedral angle between these planes is $8 \cdot 0^{\circ}$. The angles between the benzene ring and the sixand five-membered metallocycles are 2.6 and 10.3° respectively. The $\mathrm{py}(1)$ and $\mathrm{py}(3)$ planes are approximately perpendicular to each other and to the best plane through $\mathrm{N}(1), \mathrm{N}(3), \mathrm{N}(5)$ and O . The py(2) ring forms an angle of 34.5° with this plane and it is nearly perpendicular to the plane through $\mathrm{N}(1), \mathrm{N}(4), \mathrm{N}(6)$ and O . The py(4) plane is approximately a symmetry plane for the $\mathrm{Cl}(2)-\mathrm{Co}(2)-\mathrm{Cl}(3)$ angle, while $\mathrm{Cl}(1)$ is located closely to this plane. The torsion angle $\mathrm{C}(29)-\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{Cl}(1)$ is $11(1)^{\circ}$.

The imido form for the thiosemicarbazide fragment $\left[\cdots \mathrm{N}-\mathrm{N}(-\mathrm{H})-\mathrm{C}(-\mathrm{NH})-\mathrm{SCH}_{3}\right]$ of the ligand, characteristic for all S-methyl derivatives of thiosemicarbazides and thiosemicarbazones (Divjaković, Ribár, Leovac \& Gerbeleu, 1981), has been confirmed. The double bond is delocalized along $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$ as indicated by the values of the distances $\mathrm{C}(1)-\mathrm{N}(1)$ and $\mathrm{C}(1)-\mathrm{N}(2)$ which are practically equal and intermediate between single and double bonds. The imido
form of the ligand is also substantiated by the positions of the H atoms: in the difference Fourier map around $\mathrm{N}(1)$ there is only one maximum which may correspond to an H atom. Furthermore, there is a maximum at a distance of $0.97 \AA$ from $N(2)$ which can be ascribed to an H atom, supposedly transferred, during the complex formation, from the $\mathrm{N}(1) \mathrm{H}_{2}$ group to the hydrazine $N(2)$.

References

Biyskin, V. N., Gerasimov, V. I. \& Belov, N. V. (1981). Sov. Phys. Crystallogr. 26, 323-331.
Bkouche-Waksman, I. \& L'Haridon, P. (1977). Acta Cryst. B33, 11-21.
Day, M. C. \& Selbin, J. (1969). In Theoretical Inorganic Chemistry. New York: Reinhold.
Divjaković, V., Ribár, B., Leovac, V. M. \& Gerbeleu, N. V. (1981). Z. Kristallogr. 154, 83-94.

Geary, W. J. (1971). Coord. Chem. Rev. 7, 81.
Gerbeleu, N. N., Turte, K. I., Canić, V. D., Leovac, V. M. \& Arion, V. B. (1980). Koord. Khim. 6, 446-448 (in Russian).
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Laing, M. \& Carr, G. (1975). Acta Cryst. B31, 26832684.

Leovac, V. M. (1978). PhD Thesis, Institute of Chemistry, Faculty of Sciences, Univ. of Novi Sad, Yugoslavia.
Leovac, V. M., Gerbeleu, N. N. \& Revenko, M. D. (1978). Zh. Neorg. Khim. 23, 1272-1274.

Petrović, D., Carić, S., Leovac, V. M. \& Canić, V. D. (1979). Cryst. Struct. Commun. 8, 617-620.

Ribár, B., Kozmidis-Petrović, A. \& Leovac, V. M. (1980). Cryst. Struct. Commun. 9, 1237-1241.

Vance, T. B. Jr, Holt, E. M., Piernot, C. S. \& Holt, S. L. (1980). Acta Cryst. B36, 150-153.

Acta Cryst. (1982). B38, 1741-1745

Low-Temperature Crystallization of Orthorhombic Ferrocene: Structure Analysis at 98 K

By Paul Seller and Jack D. Dunitz
Organic Chemistry Laboratory, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland

(Received 30 October 1981; accepted 4 January 1982)

Abstract

Single crystals of the new low-temperature modification of ferrocene, isomorphous with ruthenocene, have been obtained by crystallization at temperatures below 110

K. Once formed, the crystals can be warmed to about 275 K before transformation to the monoclinic phase occurs. The structure of orthorhombic ferrocene has been determined at $98 \mathrm{~K}: \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}, M_{r}=186 \cdot 0, a=$ 6.987 (6), $b=8.995$ (7), $c=12.196$ (5) $\AA, U=$

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36610 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

